ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. P. Pathak, K. Velusamy, K. Devan, V. A. Suresh Kumar
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 804-817
Research Article | doi.org/10.1080/00295639.2023.2216127
Articles are hosted by Taylor and Francis Online.
Due to the presence of sodium, it is a challenging task to achieve the reliable and safe operation of steam generators in a sodium-cooled fast reactor (SFR). Water flow oscillations in a two-phase flow system worsen the tube integrity. An accurate prediction of two-phase pressure drop is essential in designing steam generators to operate in a stable regime. Toward this, experiments have been carried out on an industrial-size 19-tube model sodium-heated steam generator of 5.5-MW capacity to understand two-phase pressure drop characteristics at various operating conditions. The measured data are used to estimate the two-phase frictional pressure drop. The concept of a two-phase friction multiplier has been used in the present study. A significant variation in the two-phase frictional multiplier is seen with steam quality, whereas the variation of the two-phase friction multiplier is insignificant at saturated steam condition. Based on the experiments, complemented by computational model, a correlation has been developed for the two-phase frictional multiplier as a function of steam quality for sodium-heated once-through straight-tube steam generators.