ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Anisur Rahman, Hyun Chul Lee, Deokjung Lee
Nuclear Science and Engineering | Volume 198 | Number 3 | March 2024 | Pages 545-564
Research Article | doi.org/10.1080/00295639.2023.2194219
Articles are hosted by Taylor and Francis Online.
The predictor-corrector quasi-static method (PCQM) is used to solve the transient problem in the STREAM code, a steady-state and transient reactor analysis code with the method of characteristics. In PCQM, the angular neutron flux undergoes a factorized split to form the product of shape and amplitude functions. The time-dependent neutron transport equation is solved to obtain the shape function whereas the amplitude function is obtained by resolving the exact point kinetics equations (EPKEs). A two-level coarse mesh finite difference technique is implemented to reduce the transient running time of the transport solution. Moreover, high-order polynomial interpolation is applied to the kinetics parameters utilized in EPKEs to reduce the error when the reactivity insertion is nonlinear. Several numerical benchmarks are solved to justify the application of the procedure, proving that the method maintains solution accuracy.