ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Seiki Ohnishi, Fumiyoshi Nobuhara, Yoshihiro Hirao
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 517-526
Note | doi.org/10.1080/00295639.2023.2172309
Articles are hosted by Taylor and Francis Online.
Photon deep penetration calculations were conducted to create a buildup factor database for a new point kernel code. The calculations included the effects of photonuclear reactions, which were not considered in previous buildup factor calculations, and the target energy was extended up to 30 MeV. For media with large photonuclear cross sections, the contribution of the neutron dose becomes significant. For example, in iron at 80 mean free paths, the total dose is 1024 times larger than when the photonuclear reactions are not considered. On the other hand, it was found that if photonuclear reactions are ignored, the calculation results are not necessarily conservative in media with a significant neutron shielding capacity, such as water.