ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Pratibha Yadav, Reuven Rachamin, Jörg Konheiser, Silvio Baier
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 497-507
Research Article | doi.org/10.1080/00295639.2023.2211199
Articles are hosted by Taylor and Francis Online.
In nuclear engineering, Monte Carlo (MC) methods are commonly used for reactor analysis and radiation shielding problems. These methods are capable of dealing with both simple and complex system models with accuracy. The application of MC methods experiences challenges when dealing with the deep penetration problems that are typically encountered in radiation shielding cases. It is difficult to produce statistically reliable results due to poor particle sampling in the region of interest. Therefore, such calculations are performed by the Monte Carlo N-Particle Transport (MCNP) code in association with the weight window (WW) variance reduction technique, which increases the particle statistics in the desired tally region. However, for large problems, MCNP’s built-in weight window generator (WWG) produces zero WW parameters for tally regions located far from the source. To address this issue, the recursive Monte Carlo (RMC) method was proposed. This paper focuses on the RMC methodology and its implementation in the Helmholtz-Zentrum Dresden-Rossendorf’s (HZDR’s) in-house code TRAWEI, which is responsible for producing optimal zone weight parameters used for optimizing deep penetration MC calculations. In addition, this paper discusses the verification of the TRAWEI weight generator program to that of an existing MCNP WWG. The performance of TRAWEI-generated weight values is assessed using a handful of test cases involving two shield materials. Globally, the TRAWEI-generated weight values improved not only the statistical variance and computational efficiency of the MC run compared to the analog MCNP simulation but also those of the simulation with WW values generated by the standard MCNP WWG.