ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Davide Bozzato, Robert Froeschl
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 486-496
Research Article | doi.org/10.1080/00295639.2023.2211191
Articles are hosted by Taylor and Francis Online.
At high-energy accelerator facilities like the ones that are part of the accelerator complex at the European Organization for Nuclear Research (CERN), Monte Carlo radiation transport codes are widely employed to face the challenges of estimating radionuclide production yields and activities with the aim of performing the radiological characterization of activated components. Indeed, it is of paramount importance to ensure adequate radiation protection during scheduled maintenance, transport, and handling of these components and to establish their proper disposal pathway once they ultimately reach the end of their useful life. This paper summarizes the principles of the fluence conversion coefficients method that was developed as a complementary approach for radiological characterization studies. Then, the Monte Carlo simulations in preparation to the pilot beam run at the Large Hadron Collider at CERN in 2021 are presented as a practical example of possible applications. Finally, the flexibility of the method and the most relevant operational radiation protection implications are discussed in relation to the provided example.