ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Davide Bozzato, Robert Froeschl
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 486-496
Research Article | doi.org/10.1080/00295639.2023.2211191
Articles are hosted by Taylor and Francis Online.
At high-energy accelerator facilities like the ones that are part of the accelerator complex at the European Organization for Nuclear Research (CERN), Monte Carlo radiation transport codes are widely employed to face the challenges of estimating radionuclide production yields and activities with the aim of performing the radiological characterization of activated components. Indeed, it is of paramount importance to ensure adequate radiation protection during scheduled maintenance, transport, and handling of these components and to establish their proper disposal pathway once they ultimately reach the end of their useful life. This paper summarizes the principles of the fluence conversion coefficients method that was developed as a complementary approach for radiological characterization studies. Then, the Monte Carlo simulations in preparation to the pilot beam run at the Large Hadron Collider at CERN in 2021 are presented as a practical example of possible applications. Finally, the flexibility of the method and the most relevant operational radiation protection implications are discussed in relation to the provided example.