ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Mahdi Bakhtiari, Nam-Suk Jung, Wooyong Um, Hee-Seock Lee
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 461-475
Research Article | doi.org/10.1080/00295639.2022.2162791
Articles are hosted by Taylor and Francis Online.
Neutron imaging is a powerful and nondestructive tool for testing materials in industrial and research applications. Compact accelerator neutron sources are gaining interest in neutron application techniques, such as Bragg edge transmission imaging. Delivering a high neutron flux with a narrow pulse width and suppressed photons at the sample position are fundamental factors for designing a neutron source for Bragg edge imaging. In this study, Monte Carlo calculations were performed to simulate a 40-MeV electron beam impinging on a cylindrical tungsten target. Different target moderator and reflector (TMR) geometries were investigated to produce cold neutrons, and their results were compared. Polyethylene (PE) and graphite were used as the moderator and the reflector, respectively. The structures and dimensions of the moderator and reflector were optimized using a Monte Carlo simulation with the PHITS-3.28 code. The effect of the PE moderator temperature on the cold neutron flux was investigated. The results showed that the optimum size of the PE at 77 K inside the reflector was 3 15 15 cm3 to achieve the wavelength resolution of 1.05% and the neutron flux of 1.16 104 n/cm2/s at 1000 cm from the target station by assuming the electron beam current of 275 µA. In addition, the FLUKA 4-2.1 code was used to calculate the neutron spectrum from the designed neutron production target at room temperature, and the results were consistent with the PHITS calculations. The neutron spectrum together with its pulse width from the designed TMR were used to simulate the Bragg edges of an -Fe sample, and it was concluded that the TMR is suitable for performing Bragg edge imaging.