ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Thomas M. Miller, Paul Mueller, Kumar Mohindroo, Igor Remec
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 435-450
Research Article | doi.org/10.1080/00295639.2023.2181027
Articles are hosted by Taylor and Francis Online.
At the U.S. Department of Energy’s Oak Ridge National Laboratory, the Second Target Station (STS) beamline sources for preliminary design have been used to perform a shielding analysis of the bunker. Prompt total effective dose rates (i.e., neutron plus photon effective dose rates when the proton beam is on) were calculated on top of the bunker roof and outside the bunker wall. These areas outside the bunker will be generally accessible, so the prompt total dose rate in these areas should not exceed 2.5 μSv‧h−1 (0.25 mrem‧h−1). This paper presents the required shielding thicknesses to meet this dose rate limit. In one instance, this dose rate limit is not met: For a combination of populated and unpopulated beamlines, the prompt total dose rate outside the bunker across from the unpopulated beamline, which has less shielding because of the lack of beamline shielding, slightly exceeds 2.5 μSv‧h−1. Once more details are known regarding the STS high-density concrete density and composition, a future analysis will investigate the shielding modifications required to reduce the calculated prompt total dose rates for this configuration to less than 2.5 μSv‧h−1.