ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Akihiro Takeuchi, Masayuki Hagiwara, Hiroki Matsuda, Toshiro Itoga, Hiroyuki Konishi
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 348-357
Research Article | doi.org/10.1080/00295639.2023.2211197
Articles are hosted by Taylor and Francis Online.
Gas bremsstrahlung, generated by the interaction between stored electrons and residual gas in electron storage rings, is an important radiation source for the shielding of synchrotron radiation (SR) facilities. In recent SR facilities, hydrogen was found dominant in the residual gas of the vacuum chambers of the electron storage rings, although air has been conventionally assumed as the bremsstrahlung target for the shielding designs of SR beamlines extended from the electron storage ring. To study the effect of residual gas composition on the dose rate outside shields, we calculated the intensity of gas bremsstrahlung based on the gas composition for both the air and the residual gas expected in the recent electron storage rings using an analytical formula and general-purpose Monte Carlo codes for particle transport calculations. The analytical shielding calculation with a realistic gas composition was found to well reproduce the energy spectra of gas bremsstrahlung simulated by the Monte Carlo codes. The correction factors between the air and the realistic gas compositions are applied to the conventional analytical formulas for dose estimation of secondary radiations generated by the interaction between the bremsstrahlung from air and beamline components.