ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Akihiro Takeuchi, Masayuki Hagiwara, Hiroki Matsuda, Toshiro Itoga, Hiroyuki Konishi
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 348-357
Research Article | doi.org/10.1080/00295639.2023.2211197
Articles are hosted by Taylor and Francis Online.
Gas bremsstrahlung, generated by the interaction between stored electrons and residual gas in electron storage rings, is an important radiation source for the shielding of synchrotron radiation (SR) facilities. In recent SR facilities, hydrogen was found dominant in the residual gas of the vacuum chambers of the electron storage rings, although air has been conventionally assumed as the bremsstrahlung target for the shielding designs of SR beamlines extended from the electron storage ring. To study the effect of residual gas composition on the dose rate outside shields, we calculated the intensity of gas bremsstrahlung based on the gas composition for both the air and the residual gas expected in the recent electron storage rings using an analytical formula and general-purpose Monte Carlo codes for particle transport calculations. The analytical shielding calculation with a realistic gas composition was found to well reproduce the energy spectra of gas bremsstrahlung simulated by the Monte Carlo codes. The correction factors between the air and the realistic gas compositions are applied to the conventional analytical formulas for dose estimation of secondary radiations generated by the interaction between the bremsstrahlung from air and beamline components.