ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Kumar S. Mohindroo, Thomas Miller, Igor Remec
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 311-318
Research Article | doi.org/10.1080/00295639.2023.2191584
Articles are hosted by Taylor and Francis Online.
The Second Target Station project at Oak Ridge National Laboratory will develop a cold neutron source to meet growing experimental needs. This paper describes calculations of the residual dose rates associated with the monolith shield plug and the beamline bunker, two key conventional operations and radiation safety features. While neutron production is active, the instrument hall outside the bunker must be generally accessible with dose rates of less than 0.25 mrem/h. When neutron production is halted, the bunker must be accessible for hands-on maintenance operations. These two requirements form the cause for the assessments reported herein of residual dose rates caused by the monolith shield plug and residual dose rates in the bunker. The monolith shield plug was shown to not produce significant dose rates inside the bunker after a 20-year lifetime, and the residual dose rates inside the bunker for the case of an operating beamline were shown to reasonably allow for hands-on maintenance. These calculations are based on preliminary design models of the relevant systems. Additionally, an example showing the significance of considering neutron supermirror physics in transport calculations that track nuclide production and destruction rates to produce gamma sources for residual dose rate calculations is included. The example shows that if neutron supermirror physics is not considered, dose rate fields may be significantly underpredicted.