ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 287-299
Research Article | doi.org/10.1080/00295639.2022.2161279
Articles are hosted by Taylor and Francis Online.
Application of perturbation capabilities for density sensitivities in Monte Carlo radiation transport codes has been limited because changing source nuclide densities or source material densities changes the intrinsic source, and in most Monte Carlo codes, the user-input source is independent of the user-input materials. The perturbation capability then has no way of accounting for changes in the intrinsic source. This paper derives the sensitivity of a response with respect to a source nuclide density in terms of a portion due to the transport operator and a portion due to the source rate density. The Monte Carlo perturbation method computes the portion due to the transport operator, and the portion due to the source rate density is computed in postprocessing using parameters from the precomputed intrinsic source calculation. This paper derives first- and second-order sensitivities. The equations require the response to be separated by contribution from each of the sources modeled. A test problem containing several (α,n) and spontaneous fission neutron sources verifies the method.