ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Yi-Kang Lee, François-Xavier Hugot
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 274-286
Research Article | doi.org/10.1080/00295639.2023.2197856
Articles are hosted by Taylor and Francis Online.
TRIPOLI-4® is a general-purpose Monte Carlo radiation transport code developed by the Service d’Études des Réacteurs et de Mathématiques Appliquées at CEA-Saclay. It uses continuous-energy nuclear data to simulate neutron, photon, electron, and positron transport in fields like radiation shielding, reactor physics, and nuclear criticality safety. To study radiation protection dosimetry in human tissues and organs, male and female adult computational phantoms from the Medical Internal Radiation Dose–Oak Ridge National Laboratory phantoms family and the International Commission on Radiological Protection (ICRP) publication 110 were recently modeled and calculated using the geometry options of TRIPOLI-4. To easily use the ICRP 110 voxel-based phantoms in different exposure scenarios, a newly developed phantom option is available in TRIPOLI-4 and its display tool T4G. This new phantom option is helpful for modeling one or more phantoms and for improving calculation performance in real irradiation environments. The 2020 published pediatric computational reference phantoms are accessible from ICRP publication 143. Male and female pediatric phantoms are also verified with the new T4G tool and TRIPOLI-4 code.
This paper reports on recent works using TRIPOLI-4 on adult and pediatric computational phantoms. The modeling methods of stylized and voxel-based phantoms, the graphic displays of modeled phantoms with T4G, and the verification procedures for single-phantom and two-phantom application cases are presented. Validation for external and internal dosimetry calculations has been performed. Calculation results on organ dose S values for nuclear medicine applications are presented for single female and single male voxel phantoms using 131I and 177Lu radiation sources. Effective dose calculations for two-phantom cases using 99mTc and 18F sources are compared with traditional H*(10) calculations from nuclear medicine patient to patient caregiver.