ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
S. Oliver, S. Morató, B. Juste, R. Miró, G. Verdú, N. Tejedor, J. Pérez-Calatayud
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 264-273
Research Article | doi.org/10.1080/00295639.2023.2192312
Articles are hosted by Taylor and Francis Online.
High-energy radiotherapy treatments of a medical Linear Accelerator (LinAc) generate secondary neutrons that can produce health damage on the human body as the induction of secondary cancers. The energy spectrum of these neutrons must be determined to estimate the extra dose received by patients inside a radiotherapy room during radiotherapy treatment. To quantify the neutron production, a Ludlum Bonner sphere spectrometer (BSS) is used for measurement at different points of a LinAc bunker at the Hospital Universitari i Politècnic La Fe de València. With the neutron measured data and a set of response detector curves obtained by Monte Carlo simulations with MCNP6.1.1, the Maximum Likelihood Expectation Maximization unfolding method is used to unfold the energy neutron spectrum. Unfolded neutron spectra at different locations were compared to those obtained by Monte Carlo simulation of the same setup, showing the same energetic behavior. The fluence rate decreases with source distance, and the shape changes from a fast neutron peak in the nearest LinAc head location to a prominent thermal neutron peak in the bunker maze region. Moreover, the neutron ambient equivalent dose was obtained from the unfolded spectra and compared to Berthold detector measurements, being consistent.