ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
S. Oliver, S. Morató, B. Juste, R. Miró, G. Verdú, N. Tejedor, J. Pérez-Calatayud
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 264-273
Research Article | doi.org/10.1080/00295639.2023.2192312
Articles are hosted by Taylor and Francis Online.
High-energy radiotherapy treatments of a medical Linear Accelerator (LinAc) generate secondary neutrons that can produce health damage on the human body as the induction of secondary cancers. The energy spectrum of these neutrons must be determined to estimate the extra dose received by patients inside a radiotherapy room during radiotherapy treatment. To quantify the neutron production, a Ludlum Bonner sphere spectrometer (BSS) is used for measurement at different points of a LinAc bunker at the Hospital Universitari i Politècnic La Fe de València. With the neutron measured data and a set of response detector curves obtained by Monte Carlo simulations with MCNP6.1.1, the Maximum Likelihood Expectation Maximization unfolding method is used to unfold the energy neutron spectrum. Unfolded neutron spectra at different locations were compared to those obtained by Monte Carlo simulation of the same setup, showing the same energetic behavior. The fluence rate decreases with source distance, and the shape changes from a fast neutron peak in the nearest LinAc head location to a prominent thermal neutron peak in the bunker maze region. Moreover, the neutron ambient equivalent dose was obtained from the unfolded spectra and compared to Berthold detector measurements, being consistent.