ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Mónica Chillarón Pérez, Vicente E. Vidal, Gumersindo J. Verdú, Gregorio Quintana-Ortí
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 193-206
Research Article | doi.org/10.1080/00295639.2023.2199677
Articles are hosted by Taylor and Francis Online.
The use of iterative algebraic methods applied to the reconstruction of computed tomography (CT) medical images is proliferating to reconstruct high-quality CT images using far fewer views than through analytical methods. This would imply reducing the dose of X-rays applied to patients who require this medical test. Least-squares methods are a promising approach to reconstruct the images with few projections obtaining high quality. In addition, since these techniques involve a high computational load, it is necessary to develop efficient methods that make use of high-performance-computing tools to accelerate reconstructions. In this paper, three least-squares methods are analyzed—Least-Squares Model Based (LSMB), Least-Squares QR (LSQR), and Least-Squares Minimal Residual (LSMR)—to determine whether the LSMB method provides faster convergence and thus lower computational times. Moreover, a block version of both the LSQR method and the LSMR method was implemented. With them, multiple right-hand sides (multiple slices) can be solved at the same time, taking advantage of the parallelism obtained with the implementation of the methods using the Intel Math Kernel Library. The two implementations are compared in terms of convergence, time, and quality of the images obtained, reducing the number of projections and combining them with a regularization and acceleration technique. The experiments show how the implementations are scalable and obtain images of good quality from a reduced number of views, with the LSQR method being better suited for this application.