ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Claudia Ahdida, Elzbieta Nowak, Christelle Saury, Heinz Vincke, Helmut Vincke
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 175-184
Research Article | doi.org/10.1080/00295639.2023.2204183
Articles are hosted by Taylor and Francis Online.
A comprehensive study of the radiological CNGS (CERN Neutrinos to Gran Sasso Experiment) environment characterization is presented. It comprises the evaluation of the residual dose rates of the most relevant standalone beam line equipment, such as the target and horn, as well as overall dose levels in the cavern before and after dismantling. Furthermore, the radionuclide inventories of the main objects to be dismantled were calculated by the Monte Carlo FLUKA code and ActiWiz. The latter is particularly important for transport and waste management. Moreover, we present benchmarking measurements of residual dose rates in the experimental cavern, staying in good agreement with simulation predictions. Additional measurements, as well as FLUKA and ActiWiz studies, allowed for assessing the concrete composition of the cavern’s walls and floor and the shielding blocks. The resulting refined composition allowed for evaluating more precisely the radionuclide inventories and residual dose rates expected before and after the dismantling in the CNGS target area. This was particularly important for the evaluation of the dismantling cost and the substantial savings due to the reusage of the majority of the concrete blocks. Finally, contamination measurements in the accessible parts of the area also are included. All the results discussed are crucial for determining the requirements, planning, and costs of the CNGS dismantling.