ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ho Nieh, TVA board members, and nuclear fuel recycling bill head to Senate floor
Nieh
Ho Nieh, the Trump administration’s nominee to be a member of the Nuclear Regulatory Commission, and four new board members of the Tennessee Valley Authority were approved in a vote today by the Senate Environment and Public Works Committee and head to the Senate floor for a final vote.
The committee also voted to advance to the Senate floor the Nuclear REFUEL Act of 2025 (S. 2082), which would smooth the regulatory pathway for recycling used nuclear fuel.
President Donald nominated Nieh on July 30 to serve as NRC commissioner for the remainder of a term set to expire June 30, 2029, which was held by former NRC commissioner Chris Hanson, who Trump fired in June.
Zhihan Hu, Lin Shao
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 145-157
Research Article | doi.org/10.1080/00295639.2023.2224468
Articles are hosted by Taylor and Francis Online.
Impurities such as carbon atoms play a significant role in the void swelling of irradiated metals. The phenomenon is important to both materials designs in which impurities are intentionally introduced and accelerator-based ion irradiation testing in which impurities are introduced unintentionally as contaminants. Here, we report rate theory simulations of void nucleation in pure Fe, which are irradiated by 5-MeV Fe ions, as one typical irradiation condition used in nuclear material testing. Based on kinetics obtained previously from ab initio calculations, Multiphysics Object-Oriented Simulation Environment (MOOSE)–based numerical solvers were used to simulate defect distributions and void nucleation. Vacancy-carbon interactions increase the effective migration energies of carbon and decrease the diffusivity prefactors. The vacancy mobility reduction decreases both interstitial flux and vacancy flux. However, the vacancy flux reduction is more significant than that of interstitials, leading to reduced void nucleation in bulk. On the other hand, reduced vacancy flux toward the surface leads to local vacancy pileups, leading to locally enhanced void nucleation. These two combined effects make the void nucleation profile deviate from the displacements per atom (dpa) peak, and void swelling peaks shift to the near-surface region. The transition from deep swelling to near-surface swelling is plotted as a function of dpa rate, carbon concentration, and temperature. The study shows that the swelling peak shifting caused by the carbon effect can be avoided by either reducing dpa rates or increasing irradiation temperatures. The study is important to understand swelling behaviors and to optimize irradiation parameters for accelerator-based swelling testing.