ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Thomas Leadbeater, Andy Buffler, Michael van Heerden, Ameerah Camroodien, Deon Steyn
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 121-137
Research Article | doi.org/10.1080/00295639.2023.2171234
Articles are hosted by Taylor and Francis Online.
Positron Emission Particle Tracking (PEPT) is a radioactive tracer-based approach to studying dynamic physical processes and multiphase flows. Short-lived positron-emitting isotopes are loaded onto suitable substrates used as tracer particle flow followers in physical and engineering-relevant systems. Coincident photons from electron-positron annihilation are detected using large arrays of pixelated scintillators, with the reconstructed photon trajectories collectively used to determine tracer particle dynamics. We have developed indirect radiochemical, and direct physical activation, techniques for producing tracer particles for such studies, and we report on the current state of the art with focus on the direct approach with high-energy alpha-particle beams. The 16O(α,x)18F reactions have been explored as viable candidates in producing the pure positron emitter 18F from natural 16O-bearing targets. Silicon dioxide (SiO2) glass spheres of diameters of 5 to 10 mm were irradiated in a 100-MeV alpha-particle beam of around 800-nA current for approximately 2 h. Radioisotope activation yields were characterized by half-life measurements and gamma-ray spectroscopy, with the highest yield being 18F (<2.5 mCi). Contaminants from other reaction channels were observed and characterized, including the positron emitter 43Sc and negative beta emitter 24Na, produced from alpha and neutron activation of contaminant species in the target material, respectively. The activation technique is shown to be a reasonable candidate to complement and enhance existing tracer particle production techniques for PEPT and other radiotracer-based studies.