ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 109-120
Research Article | doi.org/10.1080/00295639.2023.2175582
Articles are hosted by Taylor and Francis Online.
Conditions that maximize the performance of an accelerator-driven system related to particle beam and energy and accelerator type are analyzed. The toolkit Geant4 simulated the interaction of protons and ions with masses up to 20Ne and energies from 0.2 to 2 GeV/n. The beam intensity considered is 1.5 × 1016 p/s. The core of the reactor is modeled as an assembly of fuel rods surrounding a cylindrical beryllium converter, with a criticality coefficient of 0.985 and lead-bismuth eutectic coolant. Lower enrichment generates better utilization of fuel (20% to 25% from the initial actinide mass can fission in a cycle keeping neutron damage in clad below 200 displacements per atom). Data on particle fluence and energy released obtained from the simulation are used to calculate total electric power produced and isotope evolution. Power spent to accelerate the beam depends on accelerator type and is calculated by scaling from data on accelerator efficiency for a reference particle. Optimal proton energy is ~1.5 GeV when the beam is accelerated in a linac with energy gain G ~ 14 and is 0.75 to 1 GeV in the case of a cyclotron (G ~ 12). Ion beams starting with 4He realize higher G values than protons: 20 to 50 in a linac and 15 to 35 in a cyclotron.