ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Bradley D. Jeffries, Peter Norgard, Barry Higgins, John M. Gahl
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 101-108
Research Article | doi.org/10.1080/00295639.2023.2194198
Articles are hosted by Taylor and Francis Online.
An available supply of high-specific-activity radioisotopes was identified by the U.S. Department of Energy as a critical priority in the development and eventual deployment of next-generation medical diagnostic and cancer therapy tools. A radioisotope mass separator, located at the Missouri University Research Reactor Center, was developed to provide radioactive ion beams for the separation and production of high-specific-activity lanthanides used in radiopharmacology. Experiments characterizing the ionization efficiency of a thermal ion source supporting the production of high-specific-activity 153Sm are reported. With the goal of maximizing ion current while maintaining beam stability, experiments with the test ion source expand upon previously reported data from a titanium prototype ion source. Experimental results of various factors affecting ion source performance, such as diameter of the extraction orifice, ionizer geometry, ionizer temperature, and sample evaporation rate, are presented.