ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Peter Norgard, Bradley D. Jeffries, Barry Higgins, John M. Gahl, J. David Robertson
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 83-91
Research Article | doi.org/10.1080/00295639.2023.2173965
Articles are hosted by Taylor and Francis Online.
An available supply of high-specific-activity radioisotopes was identified by the U.S. Department of Energy as a critical priority to the development and eventual deployment of next-generation medical diagnostic and cancer therapy tools. Work at the University of Missouri Research Reactor Center has been undertaken to develop an electromagnetic isotope separation technique that will leverage the production capabilities of the 10-MW reactor to provide radiolanthanides in quantities suitable for use in preclinical trials. A high-throughput concept design based on a solid tantalum hot surface ion source and an insertable titanium crucible will be described. Significant aspects of the electrical and thermal design of the ion source will be presented. Novel heating and cooling strategies were employed to concentrate heating where it is most needed while attempting to reduce thermal stress where heating is not required. Thermal testing from the commissioning process will be presented to demonstrate the temperature at several key locations in and around the ion source.