ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
V. Santoro, K. H. Andersen, P. Bentley, M. Bernasconi, M. Bertelsen, Y. Beßler, A. Bianchi, T. Brys, D. Campi, A. Chambon, V. Czamler, D. D. Di Julio, E. Dian, K. Dunne, M. J. Ferreira, P. Fierlinger, U. Friman-Gayer, B. T. Folsom, A. Gaye, G. Gorini, C. Happe, M. Holl, Y. Kamyshkov, T. Kittelmann, E. B. Klinkby, R. Kolevatov, S. I. Laporte, B. Lauritzen, J. I. Marquez Damian, B. Meirose, F. Mezei, D. Milstead, G. Muhrer, V. Neshvizhevsky, B. Rataj, N. Rizzi, L. Rosta, S. Samothrakitis, H. Schober, J. R. Selknaes, S. Silverstein, M. Strobl, M. Strothmann, A. Takibayev, R. Wagner, P. Willendrup, S. Xu, S. C. Yiu, L. Zanini, O. Zimmer
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 31-63
Research Article | doi.org/10.1080/00295639.2023.2204184
Articles are hosted by Taylor and Francis Online.
The European Spallation Source (ESS), presently under construction in Lund, Sweden, is a multidisciplinary international laboratory that, once completed at full specifications, will operate the world’s most powerful pulsed neutron source. Supported by a 3 M Euro Research and Innovation Action within the European Union Horizon 2020 program, a design study (HighNESS) is now underway to develop a second neutron source located below the spallation target. Compared to the first source, which is located above the spallation target and designed for high cold and thermal brightness, the new source is being optimized to deliver higher intensity and a shift to longer wavelengths in the spectral regions of cold neutrons (CNs) (2 to 20 Å), very cold neutrons (VCNs) (10 to 120 Å), and ultracold neutrons (UCNs) (500 Å). The second source consists of a large liquid deuterium moderator to deliver CNs and serve secondary VCN and UCN sources, for which different options are under study. These new sources will boost several areas of condensed matter research and will provide unique opportunities in fundamental physics. The HighNESS project is now entering its last year, and we are working toward the Conceptual Design Report of the ESS upgrade. In this paper, results obtained in the first 2 years, ongoing developments, and future perspectives are described.