ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Patrick Achenbach, Mirco Christmann
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 1-6
Research Article | doi.org/10.1080/00295639.2022.2151301
Articles are hosted by Taylor and Francis Online.
Light dark matter (LDM) in the mega-electron-volt to giga-electron-volt mass region is an attractive candidate for the all-pervasive and encompassing matter making up the vast bulk of the mass of our universe. Beam dump experiments at high-intensity accelerators are a powerful tool to produce and detect LDM. They can probe an unexplored dark sector that is interacting with the standard model (SM) through one or more portals. At the lowest-beam-energy end, the DarkMESA experiment will run behind the dump of the 150-MeV electron beam of the MESA accelerator, currently under construction at the Institute for Nuclear Physics in Mainz. The concept for detecting direct scattering reactions of LDM comprises an electromagnetic calorimeter surrounded by an active veto system for rejecting backgrounds from SM particles. Suitable shielding will be located between the downstream detectors and the dump. A low-pressure, negative-ion, time-projection chamber could supplement these searches. At much higher beam energies, the Beam Dump eXperiment (BDX) is proposed to run parasitically behind the Jefferson Lab Hall-A beam dump making use of the up to 11-GeV electron beam. BDX employs the same detector concept. Direct LDM scattering reactions can be detected in an electromagnetic calorimeter operated inside hermetic layers of veto counters and a thick lead vault. Both experiments can explore uncovered regions of the parameter space of the LDM interaction strength versus mass, exceeding the discovery potential of existing experiments.