ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
William C. Dawn, Scott Palmtag
Nuclear Science and Engineering | Volume 197 | Number 12 | December 2023 | Pages 3138-3159
Regular Research Article | doi.org/10.1080/00295639.2023.2189510
Articles are hosted by Taylor and Francis Online.
The Microreactor Exascale eZ CALculation (MEZCAL) tool has been developed to accurately and efficiently solve the neutron transport equation in general, unstructured meshes to support the design and modeling of microreactors. MEZCAL solves the self-adjoint angular flux form of the neutron transport equation using the finite element method. As the neutron transport equation is computationally expensive to solve, MEZCAL is designed to efficiently use exascale computing architectures, with an emphasis on graphics processing unit computing. To leverage existing tools, MEZCAL is built using the MFEM library and uses solvers from HYPRE, PETSc, and SLEPc. Verification of the neutron transport solver in MEZCAL is demonstrated with the solution to a one-dimensional cylindrical problem that has a semi-analytic solution. After verification, a realistic microreactor based on the MARVEL microreactor design is modeled using MEZCAL. Spatial and angular refinement results are presented for a two-dimensional model of the MARVEL microreactor, and the eigenvalue is converged to approximately 60 pcm. This convergence required a very fine mesh and more than 3.76 Billion Degrees Of Freedom (BDOF). Preliminary results are also presented for a three-dimensional model of the MARVEL microreactor. Finally, a weak scaling study is performed to investigate how the methods in MEZCAL will scale for larger problems with the next generation of exascale computing architectures.