ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
V. Tiwari, T. F. Abbink, J. A. Ocádiz Flores, J. L. Flèche, C. Gueneau, S. Chatain, A. L. Smith, J. Martinet, C. Venard
Nuclear Science and Engineering | Volume 197 | Number 12 | December 2023 | Pages 3035-3057
YMSR Paper | doi.org/10.1080/00295639.2023.2223745
Articles are hosted by Taylor and Francis Online.
A thorough understanding of the corrosion chemistry between molten salt fuel and structural materials (e.g., steel) is key for the advancement of Molten Salt Reactor technology. In this work, we consider more specifically the case of a chloride fuel salt mixture and the thermochemistry of a salt mixture such as (NaCl-MgCl2-PuCl3) in interaction with (Fe, Cr, Ni). The present work aims at the development of a thermodynamic model of the key subsystems NaCl-CrCl2, NaCl-CrCl3, and FeCl2-CrCl2 to predict corrosion products that may form between molten salt and structural materials. The Modified Quasichemical Model in the quadruplet approximation is used to describe the Gibbs energy of the liquid phase. A critical review of the existing phase diagram and thermodynamic data on theses systems is first presented. To alleviate the lack of data, ab initio calculations coupled with a quasi-harmonic approach are performed to estimate the thermodynamic properties for the intermediate solid compounds Na2CrCl4 and Na3CrCl6, which exist in the NaCl-CrCl2 and NaCl-CrCl3 systems, respectively. These atomistic simulation data together with selected experimental data are then used as input for the thermodynamic assessment of the three subsystems.