ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K., Japan to extend decommissioning partnership
The U.K.’s Sellafield Ltd. and Japan’s Tokyo Electric Power Company have pledge to continue to work together for up to an additional 10 years, extending a cooperative agreement begun in 2014 following the 2011 tsunami that resulted in the irreparable damage of TEPCO’s Fukushima Daiichi plant.
Nathan Greiner, François Madiot, Yannick Gorsse, Cyril Patricot, Guillaume Campioni
Nuclear Science and Engineering | Volume 197 | Number 12 | December 2023 | Pages 3000-3021
YMSR Paper | doi.org/10.1080/00295639.2023.2197043
Articles are hosted by Taylor and Francis Online.
Molten salt nuclear reactors (MSRs) constitute a promising technology to produce safe, reliable, abundant low-carbon energy. To design MSR systems and perform safety analyses on them, numerical simulation is a powerful tool. Here, we implemented a coupling between several solvers of the deterministic neutronics code APOLLO3® (the MINARET SN transport and the MINOS diffusion and SPn-simplified transport solvers) and the computational fluid dynamics (CFD) code TRUST/TrioCFD, both developed at the French Alternative Energies and Atomic Energy Commission (CEA). The code coupling is orchestrated using the dedicated C3PO library of the open-source SALOME platform. A new code-coupling strategy is employed whereby the delayed neutron precursor concentrations are computed by the CFD code, which eases the use of traditional deterministic neutronics codes. We verified the correctness of our implementation by performing a numerical benchmark dedicated to fast spectrum MSRs originally devised by the French National Center for Scientific Research. The numerical results we obtained are in excellent agreement with those obtained by recent MSR-dedicated multiphysics simulation tools. This study provides a new convenient neutronic–thermal-hydraulic coupling strategy for MSR core simulation.