ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Nicolo’ Abrate, Alex Aimetta, Sandra Dulla, Nicola Pedroni
Nuclear Science and Engineering | Volume 197 | Number 12 | December 2023 | Pages 2977-2999
YMSR Paper | doi.org/10.1080/00295639.2023.2190861
Articles are hosted by Taylor and Francis Online.
The development of new reactor technologies requires careful assessments of the various sources of epistemic uncertainties. In this work, nuclear data uncertainties featuring the main isotopes of the U/Th molten salt fast reactor (MSFR) design are propagated through Monte Carlo calculations to quantify the final uncertainty on some relevant integral parameters. In the first part of this paper, some best-estimate calculations are performed by selecting different nuclear data libraries, showing the remarkable impact of this choice on the final responses. Then the Generalized Perturbation Theory routine available in Serpent 2 is adopted for a preliminary sensitivity and uncertainty analyses with respect to keff, highlighting a significant discrepancy between the covariance of the JEFF-3.3 and ENDF/B-VIII.0 libraries. After the selection of a few relevant nuclides, namely, 7Li, 19F, 232Th, and 233U, the Total Monte Carlo method and the unscented transform (UT) are then adopted to estimate the uncertainty of other responses of interest like the conversion ratio and some multigroup constants. Some potential issues of the UT are highlighted, and a mitigation strategy is applied. A relevant result of this analysis concerns the need for better data evaluations for the nuclides constituting the circulating salt for an effective deployment of the MSFR technology.