ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
BWXT’s Centrifuge Manufacturing Development Facility opens in Oak Ridge
BWX Technologies announced on January 26 that it has begun operating its Centrifuge Manufacturing Development Facility in Oak Ridge, Tenn., with the purpose of reestablishing a domestic uranium enrichment capability to meet U.S. national security needs. The facility is part of a program funded by the Department of Energy’s National Nuclear Security Administration to supply enriched uranium for defense needs.
Nicolo’ Abrate, Alex Aimetta, Sandra Dulla, Nicola Pedroni
Nuclear Science and Engineering | Volume 197 | Number 12 | December 2023 | Pages 2977-2999
YMSR Paper | doi.org/10.1080/00295639.2023.2190861
Articles are hosted by Taylor and Francis Online.
The development of new reactor technologies requires careful assessments of the various sources of epistemic uncertainties. In this work, nuclear data uncertainties featuring the main isotopes of the U/Th molten salt fast reactor (MSFR) design are propagated through Monte Carlo calculations to quantify the final uncertainty on some relevant integral parameters. In the first part of this paper, some best-estimate calculations are performed by selecting different nuclear data libraries, showing the remarkable impact of this choice on the final responses. Then the Generalized Perturbation Theory routine available in Serpent 2 is adopted for a preliminary sensitivity and uncertainty analyses with respect to keff, highlighting a significant discrepancy between the covariance of the JEFF-3.3 and ENDF/B-VIII.0 libraries. After the selection of a few relevant nuclides, namely, 7Li, 19F, 232Th, and 233U, the Total Monte Carlo method and the unscented transform (UT) are then adopted to estimate the uncertainty of other responses of interest like the conversion ratio and some multigroup constants. Some potential issues of the UT are highlighted, and a mitigation strategy is applied. A relevant result of this analysis concerns the need for better data evaluations for the nuclides constituting the circulating salt for an effective deployment of the MSFR technology.