ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Tanner W. Hall, Meng-Jen (Vince) Wang, Glenn E. Sjoden, Matthew Watrous, Corey Hines
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2935-2949
Regular Research Article | doi.org/10.1080/00295639.2023.2178227
Articles are hosted by Taylor and Francis Online.
This work summarizes the radiation transport–based design for a new D2O-moderated ex-core irradiation facility in the Washington State University (WSU) TRIGA reactor for optimization of 135Xe sources used for calibration and quality control testing of Xe gas detection equipment in support of the Comprehensive Test Ban Treaty (CTBT). Three-dimensional (3-D) particle transport analysis characterizing the WSU reactor core using MCNP6.2 (3-D Monte Carlo) and PENTRAN (3-D deterministic parallel SN) form the basis for the computational optimization. Excellent agreement between MCNP6.2 and PENTRAN predictions is observed. A fundamental fuel bundle depletion analysis is applied to enable a more accurate prediction of neutron flux and neutron spectrum distribution, which drives production rates of 135Xe and 133Xe. The results of various model simulations were used to inform recommendations for the final irradiation chamber design, which has been optimized for safe placement in the reactor tank prior to startup and will allow for insertion and rotation of xenon “bean” samples using existing WSU irradiation equipment, while remaining within operational parameters. The irradiation chamber is expected to produce samples that will remain viable for use in CTBT standards applications for durations 70% to 80% longer than samples produced using current procedures. Thus, this design is expected to improve CTBT-related calibrations and performance testing and to support the continued stability of the CTBT monitoring network.