ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Yutong Wen, Ding She, Lei Shi
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2920-2934
Regular Research Article | doi.org/10.1080/00295639.2023.2172312
Articles are hosted by Taylor and Francis Online.
There exists a neutron streaming effect in the high-temperature gas-cooled pebble-bed reactor (HTGR) pebble-bed core caused by the spatial heterogeneity of the neutron’s free path, which has a remarkable impact on neutron leakage. It is necessary to take into consideration the streaming effect in evaluating the homogenized diffusion coefficient of the pebble bed, prior to the whole-core diffusion calculation. In this paper, two methods are proposed for calculating the homogenized multigroup diffusion coefficient of the pebble bed based on migration area conservation theory and Benoist’s theory, respectively. Compared with existing methods, the newly proposed methods are adaptable to a general pebble bed consisting of multitype pebbles and nonvacuum atmosphere. Numerical results demonstrate the proposed methods’ effectiveness and consistency in evaluation of the pebble-bed homogenized diffusion coefficient.