ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Cheol Ho Pyeon, Ryota Katano, Akito Oizumi, Masahiro Fukushima
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2902-2919
Regular Research Article | doi.org/10.1080/00295639.2023.2172311
Articles are hosted by Taylor and Francis Online.
Sample reactivity and void reactivity experiments are carried out in the solid-moderated and solid-reflected cores at the Kyoto University Critical Assembly (KUCA) with the combined use of aluminum (Al), lead (Pb), and bismuth (Bi) samples, and Al spacers simulating the void. MCNP6.2 eigenvalue calculations together with JENDL-4.0 provide good accuracy of sample reactivity with the comparison of experimental results. Also, experimental void reactivity is attained by using MCNP6.2 together with JENDL-4.0 and ENDF/B-VII.1 with a small relative difference between experiments and calculations. Uncertainty in sample reactivity and void reactivity due to the ENDF/B-VII.1 Al, Pb, and Bi nuclear data is quantified using sensitivities calculated by the ksen card in MCNP6.2 and covariances provided by SCALE6.2. A series of reactivity analyses with the Al spacer simulating the void demonstrates the means of analyzing the void in the solid-moderated and solid-reflected cores at KUCA.