ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Cheol Ho Pyeon, Ryota Katano, Akito Oizumi, Masahiro Fukushima
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2902-2919
Regular Research Article | doi.org/10.1080/00295639.2023.2172311
Articles are hosted by Taylor and Francis Online.
Sample reactivity and void reactivity experiments are carried out in the solid-moderated and solid-reflected cores at the Kyoto University Critical Assembly (KUCA) with the combined use of aluminum (Al), lead (Pb), and bismuth (Bi) samples, and Al spacers simulating the void. MCNP6.2 eigenvalue calculations together with JENDL-4.0 provide good accuracy of sample reactivity with the comparison of experimental results. Also, experimental void reactivity is attained by using MCNP6.2 together with JENDL-4.0 and ENDF/B-VII.1 with a small relative difference between experiments and calculations. Uncertainty in sample reactivity and void reactivity due to the ENDF/B-VII.1 Al, Pb, and Bi nuclear data is quantified using sensitivities calculated by the ksen card in MCNP6.2 and covariances provided by SCALE6.2. A series of reactivity analyses with the Al spacer simulating the void demonstrates the means of analyzing the void in the solid-moderated and solid-reflected cores at KUCA.