ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Anjun Jiao, David Ricks, Thomas Remick, Brian J. Hansen
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2830-2839
Regular Research Article | doi.org/10.1080/00295639.2023.2171274
Articles are hosted by Taylor and Francis Online.
A new methodology using a free turbulent flow model to evaluate control room habitability is developed, and the theoretical model can be applied to the postulated event of rupture or line break of the on-site hazardous gas pressurized tank/system. Based on the conservation of mass law and momentum equations, correlations of the control room ventilation hazardous gas intake concentration and the control room buildup toxic concentration were established and can be used to evaluate control room habitability. Compared with current methodology widely used in the industry (introduced by NUREG-0570), the developed theoretical analysis methodology is applicable to events occurring without any constraint on the distance between the site of toxic gas release and the inlet of the control room fresh air intake or the control room. With a given amount of hazardous gas release source, the analysis results indicate that maximum control room toxic gas concentration will depend on the mass release rate or its break size, the density of the hazardous gas, and the distance between the site of the toxic release and the control room fresh air intake. The limiting case of the control room habitability analysis will occur at the break size resulting in the highest control room toxic gas concentration. The control room toxic gas transient concentration at the limiting break size can be predicted by the model and compared with its acceptance criteria of short-term exposure limit and time-weighted average to evaluate the control room habitability whether protection actions of the control room operators are required to prevent incapacitation or death due to the postulated events of toxic gas release.