ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Anjun Jiao, David Ricks, Thomas Remick, Brian J. Hansen
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2830-2839
Regular Research Article | doi.org/10.1080/00295639.2023.2171274
Articles are hosted by Taylor and Francis Online.
A new methodology using a free turbulent flow model to evaluate control room habitability is developed, and the theoretical model can be applied to the postulated event of rupture or line break of the on-site hazardous gas pressurized tank/system. Based on the conservation of mass law and momentum equations, correlations of the control room ventilation hazardous gas intake concentration and the control room buildup toxic concentration were established and can be used to evaluate control room habitability. Compared with current methodology widely used in the industry (introduced by NUREG-0570), the developed theoretical analysis methodology is applicable to events occurring without any constraint on the distance between the site of toxic gas release and the inlet of the control room fresh air intake or the control room. With a given amount of hazardous gas release source, the analysis results indicate that maximum control room toxic gas concentration will depend on the mass release rate or its break size, the density of the hazardous gas, and the distance between the site of the toxic release and the control room fresh air intake. The limiting case of the control room habitability analysis will occur at the break size resulting in the highest control room toxic gas concentration. The control room toxic gas transient concentration at the limiting break size can be predicted by the model and compared with its acceptance criteria of short-term exposure limit and time-weighted average to evaluate the control room habitability whether protection actions of the control room operators are required to prevent incapacitation or death due to the postulated events of toxic gas release.