ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Ali Mansoor, Xiaoxu Diao, Carol Smidts
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2751-2777
PSA 2021 Paper | doi.org/10.1080/00295639.2023.2196937
Articles are hosted by Taylor and Francis Online.
The increased complexity of modern system designs and demands for quicker time to market have made safety-related verification and validation of such systems more challenging. Incorporating safety and risk considerations at the early stages of design is one way to acquire a more robust initial design for novel systems. Inductive fault analysis has its significance at final stages of design, e.g., verification and validation. However, to preclude certain system failure states—especially for the systems with high failure consequences, a designer would innately prefer to trace back and remedy the causes of failure, as compared to a more cumbersome activity of identifying the faults individually and sifting the combinations that lead to the failure of interest. The work presented in this paper is aimed at the development of a backward failure propagation methodology for analyzing the origins of functional failures in a conceptual design of systems including but not limited to nuclear, mechanical, aerospace, process, electrical/electronics, telecommunication, automotive, etc. This method allows the designer to achieve a robust early design based on the analyses of the system’s functional dependencies before proceeding to the detailed design and testing stages. The insights provided by the analysis at the conceptual design stage also reduce redesign efforts, testing costs, and project delays. The proposed method is a functional analysis approach that extends the Integrated System Failure Analysis for backward failure propagation. When provided with an abstract system configuration, a system’s functional model, and a system’s behavioral model, it utilizes a known functional state (typically a failure) to acquire system component modes and the states of other functions. The method includes inversion of the functional failure logic and component behavioral rules using propositional logic and deductive analysis to assess valid states of a system that satisfy the given initial conditions. To test the method’s scalability, we applied the proposed method to a simplified representation of the secondary loop of a typical pressurized water reactor.