ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Ali Mansoor, Xiaoxu Diao, Carol Smidts
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2751-2777
PSA 2021 Paper | doi.org/10.1080/00295639.2023.2196937
Articles are hosted by Taylor and Francis Online.
The increased complexity of modern system designs and demands for quicker time to market have made safety-related verification and validation of such systems more challenging. Incorporating safety and risk considerations at the early stages of design is one way to acquire a more robust initial design for novel systems. Inductive fault analysis has its significance at final stages of design, e.g., verification and validation. However, to preclude certain system failure states—especially for the systems with high failure consequences, a designer would innately prefer to trace back and remedy the causes of failure, as compared to a more cumbersome activity of identifying the faults individually and sifting the combinations that lead to the failure of interest. The work presented in this paper is aimed at the development of a backward failure propagation methodology for analyzing the origins of functional failures in a conceptual design of systems including but not limited to nuclear, mechanical, aerospace, process, electrical/electronics, telecommunication, automotive, etc. This method allows the designer to achieve a robust early design based on the analyses of the system’s functional dependencies before proceeding to the detailed design and testing stages. The insights provided by the analysis at the conceptual design stage also reduce redesign efforts, testing costs, and project delays. The proposed method is a functional analysis approach that extends the Integrated System Failure Analysis for backward failure propagation. When provided with an abstract system configuration, a system’s functional model, and a system’s behavioral model, it utilizes a known functional state (typically a failure) to acquire system component modes and the states of other functions. The method includes inversion of the functional failure logic and component behavioral rules using propositional logic and deductive analysis to assess valid states of a system that satisfy the given initial conditions. To test the method’s scalability, we applied the proposed method to a simplified representation of the secondary loop of a typical pressurized water reactor.