ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Fred Gelbard, Bradley A. Beeny, Larry L. Humphries, Kenneth C. Wagner, Lucas I. Albright, Max Poschmann, Markus H. A. Piro
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2723-2741
Research Article | doi.org/10.1080/00295639.2022.2161277
Articles are hosted by Taylor and Francis Online.
Molten Salt Reactor (MSR) systems can be divided into two basic categories: liquid-fueled MSRs in which the fuel is dissolved in the salt, and solid-fueled systems such as the Fluoride-salt-cooled High-temperature Reactor (FHR). The molten salt provides an impediment to fission product release as actinides and many fission products are soluble in molten salt. Nonetheless, under accident conditions, some radionuclides may escape the salt by vaporization and aerosol formation, which may lead to release into the environment. We present recent enhancements to MELCOR to represent the transport of radionuclides in the salt and releases from the salt. Some soluble but volatile radionuclides may vaporize and subsequently condense to aerosol. Insoluble fission products can deposit on structures. Thermochimica, an open-source Gibbs Energy Minimization (GEM) code, has been integrated into MELCOR. With the appropriate thermochemical database, Thermochimica provides the solubility and vapor pressure of species as a function of temperature, pressure, and composition, which are needed to characterize the vaporization rate and the state of the salt with fission products. Since thermochemical databases are still under active development for molten salt systems, thermodynamic data for fission product solubility and vapor pressure may be user specified. This enables preliminary assessments of fission product transport in molten salt systems. In this paper, we discuss modeling of soluble and insoluble fission product releases in a MSR with Thermochimica incorporated into MELCOR. Separate-effects experiments performed as part of the Molten Salt Reactor Experiment in which radioactive aerosol was released are discussed as needed for determining the source term.