ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Fabian Schlegel, Richard Meller, Benjamin Krull, Ronald Lehnigk, Matej Tekavčič
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2620-2633
Research Article | doi.org/10.1080/00295639.2022.2120316
Articles are hosted by Taylor and Francis Online.
Industrial multiphase flows are typically characterized by coexisting morphologies. Modern simulation methods are well established for dispersed [e.g., Euler-Euler (E-E)] or resolved [e.g., volume-of-fluid (VOF)] interfacial structures. Hence, a morphology adaptive multifield two-fluid model is proposed that is able to handle dispersed and resolved interfacial structures coexisting in the computational domain with the same set of equations. An interfacial drag formulation for large interfacial structures is used to describe them in a VOF-like manner. For the dispersed structures, the baseline model developed at Helmholtz-Zentrum Dresden-Rossendorf is applied. The functionality of the framework is demonstrated by investigating a single rising gas bubble in a stagnant water column, a two-dimensional stagnant stratification of water and oil sharing a large-scale interface that is penetrated by micro gas bubbles, and an isothermal countercurrent stratified flow case. Recent developments focus on the transition region, where bubbles are overresolved or underresolved either for E-E or for VOF. Furthermore, a concept is presented for the transition of oversized dispersed bubbles into the resolved phase.