ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
BWXT’s Centrifuge Manufacturing Development Facility opens in Oak Ridge
BWX Technologies announced on January 26 that it has begun operating its Centrifuge Manufacturing Development Facility in Oak Ridge, Tenn., with the purpose of reestablishing a domestic uranium enrichment capability to meet U.S. national security needs. The facility is part of a program funded by the Department of Energy’s National Nuclear Security Administration to supply enriched uranium for defense needs.
Dingkang Zhang, Farzad Rahnema
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2498-2508
Research Article | doi.org/10.1080/00295639.2023.2196936
Articles are hosted by Taylor and Francis Online.
The COarse MEsh Transport (COMET) method, a hybrid continuous energy stochastic and deterministic transport method/tool based on the incident flux response expansion theory, is capable of providing highly accurate and efficient continuous energy whole-core neutron solutions to various heterogeneous reactor cores. In this work, a novel low-order (zeroth-order) acceleration technique is developed to significantly improve COMET’s computational efficiency for core calculations. This new method is based on consistent coupled low-order and high-order calculations to obtain the COMET core solution. In the low-order calculations, COMET is used to converge the total partial current escaping from each coarse mesh and the core eigenvalue. The resulting fixed-source problem in which the off-diagonal terms (equivalent to the scattering and fission neutron sources) are constructed by the zeroth-order solution are efficiently solved by the high-order COMET calculations. The resulting high-order angular flux on each coarse mesh bounding surface is then used to update (collapse) the low-order response coefficients. The coupled low-order and high-order calculations are repeated until both the eigenvalue and the low-order response coefficients are converged. The new acceleration method is implemented into COMET and tested in a set of stylized Advanced High Temperature Reactor (AHTR) benchmark problems. It is found that the core eigenvalues and the local fission density distributions predicted by COMET with the low-order acceleration agree very well with those computed by the original COMET. The eigenvalue discrepancy varies from 0 to 1 pcm, and the average relative differences in the stripewise and assembly-average fission density distributions are in the range of 0.021% to 0.032% and 0.004% to 0.01%, respectively. The comparisons have shown that the new low-order acceleration method can maintain COMET’s accuracy while improving its computational efficiency for core calculations by 12 to 16 times.