ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
E. Masiello, F. Filiciotto, S. Lapuerta-Cochet, R. Lenain
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2404-2424
Research Article | doi.org/10.1080/00295639.2023.2175583
Articles are hosted by Taylor and Francis Online.
This work presents an asymptotic method based on angular flux expansion in a Neumann series. The technique is aimed at effective reduction of the memory imprint of numerical methods based on collision probabilities (CPs). The asymptotic method has been implemented in the heterogeneous Cartesian cells of the integro-differential transport solver (IDT). The IDT solves the neutral-particle transport equation by discrete ordinates combined with angular-dependent CP matrices. In lattice depletion calculations, because of the change of isotopic concentration along the burnup, methods based on CP discretization, such as current-coupling CP or the one presented in this paper, would require construction and storage of a set of CP coefficients for any depleted pin cell. When the number of media grows, the performances of the solver are bounded by the memory pressure caused by the growth of coefficients. Application of the asymptotic technique, presented in this paper, transforms by two user’s parameters the memory-bound solver in a compute-bound application, where the principal workload is transferred from coefficients to source iterations. In this work, a theoretical study of the method is presented together with two applications to two-dimensional assembly simulations. The effects on self-shielded and depleted materials are highlighted. Preliminary results show an encouraging reduction of memory occupation by a factor 10 without any significant loss of accuracy.