ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
E. Masiello, F. Filiciotto, S. Lapuerta-Cochet, R. Lenain
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2404-2424
Research Article | doi.org/10.1080/00295639.2023.2175583
Articles are hosted by Taylor and Francis Online.
This work presents an asymptotic method based on angular flux expansion in a Neumann series. The technique is aimed at effective reduction of the memory imprint of numerical methods based on collision probabilities (CPs). The asymptotic method has been implemented in the heterogeneous Cartesian cells of the integro-differential transport solver (IDT). The IDT solves the neutral-particle transport equation by discrete ordinates combined with angular-dependent CP matrices. In lattice depletion calculations, because of the change of isotopic concentration along the burnup, methods based on CP discretization, such as current-coupling CP or the one presented in this paper, would require construction and storage of a set of CP coefficients for any depleted pin cell. When the number of media grows, the performances of the solver are bounded by the memory pressure caused by the growth of coefficients. Application of the asymptotic technique, presented in this paper, transforms by two user’s parameters the memory-bound solver in a compute-bound application, where the principal workload is transferred from coefficients to source iterations. In this work, a theoretical study of the method is presented together with two applications to two-dimensional assembly simulations. The effects on self-shielded and depleted materials are highlighted. Preliminary results show an encouraging reduction of memory occupation by a factor 10 without any significant loss of accuracy.