ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Francesca Brini, Leonardo Seccia
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2301-2316
Research Article | doi.org/10.1080/00295639.2023.2166754
Articles are hosted by Taylor and Francis Online.
The paper studies the case of shrinking cylindrical gas bubbles acting as a radial piston and generating acceleration waves. The behavior of such waves and their improbable transformation into shocks are illustrated theoretically, as well as through some examples inspired by experimental data. The use of rational extended thermodynamics enables us to highlight the relevance of the dissipation and the possible role played by dynamic pressure and stress tensor in bubble evolution or shock formation. These results constitute an extension and a completion of a previous work dedicated to the analysis of acceleration waves generated in oscillating spherical bubbles.