ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Olin W. Calvin, Micah D. Gale, Sebastian Schunert
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2234-2250
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2161802
Articles are hosted by Taylor and Francis Online.
Traditionally, analysts solve the Bateman depletion equations to calculate the nuclide number density (NND) of each nuclide since these densities impact other reactor parameters, such as reactivity, as they change. Many quantities of interest, such as radiation damage, are calculated using simple integration methods, assuming that the NNDs are constant over a given depletion interval. However, the NNDs are time dependent, which can be accurately represented only by the Bateman depletion equations. We propose that these quantities can be calculated simultaneously with the NNDs within the Bateman depletion equations, preserving the coupled nature of these quantities to the time-dependent NNDs. We implemented this functionality in Griffin, demonstrating that only minor code modifications were necessary in order to accommodate an evaluation of these quantities in the Bateman depletion equations. The Chebyshev Rational Approximation Method was used to successfully solve for these additional quantities in the Bateman depletion equations. For radiation damage, the results calculated by Griffin were very accurate, differing by less than 2.5% from an analytical benchmark. For other quantities, the discrepancy between quantities calculated by the Bateman depletion equations versus those calculated by the Forward Euler method exceeded 10% for decay energy and 2% for fissions per initial heavy metal atom and kinetic energy released per unit mass when few depletion intervals were used. As the number of depletion intervals increased, both methods began to converge as expected.