ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Olin W. Calvin, Micah D. Gale, Sebastian Schunert
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2234-2250
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2161802
Articles are hosted by Taylor and Francis Online.
Traditionally, analysts solve the Bateman depletion equations to calculate the nuclide number density (NND) of each nuclide since these densities impact other reactor parameters, such as reactivity, as they change. Many quantities of interest, such as radiation damage, are calculated using simple integration methods, assuming that the NNDs are constant over a given depletion interval. However, the NNDs are time dependent, which can be accurately represented only by the Bateman depletion equations. We propose that these quantities can be calculated simultaneously with the NNDs within the Bateman depletion equations, preserving the coupled nature of these quantities to the time-dependent NNDs. We implemented this functionality in Griffin, demonstrating that only minor code modifications were necessary in order to accommodate an evaluation of these quantities in the Bateman depletion equations. The Chebyshev Rational Approximation Method was used to successfully solve for these additional quantities in the Bateman depletion equations. For radiation damage, the results calculated by Griffin were very accurate, differing by less than 2.5% from an analytical benchmark. For other quantities, the discrepancy between quantities calculated by the Bateman depletion equations versus those calculated by the Forward Euler method exceeded 10% for decay energy and 2% for fissions per initial heavy metal atom and kinetic energy released per unit mass when few depletion intervals were used. As the number of depletion intervals increased, both methods began to converge as expected.