ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
William J. Walters
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2150-2160
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2161805
Articles are hosted by Taylor and Francis Online.
The centrifugal nuclear thermal rocket is a concept for a liquid-fueled nuclear system that would allow for a much higher specific impulse than the more traditional solid-fueled nuclear thermal propulsion designs. Although some preliminary neutronics analyses have been done on conceptual designs, this work seeks to perform a more systematic analysis and optimization of design parameters and to investigate additional neutronics properties such as power distributions and reactivity coefficients. This work used OpenMC for neutronics analysis and Dakota for the parametric study and optimization. Inter- and intra-fuel element power distributions were calculated, and a strong radial dependence was noted within fuel elements that may pose a challenge to thermal constraints. A positive moderator temperature coefficient of 3.78 0.16 pcm/K was calculated for the reference model, which may pose a challenge for system design and control. The optimization study of reflector size, fuel spacing, fuel mass, and fuel element radius indicated many trade-offs in the design considerations, and that the baseline model can be significantly improved in all respects. Positive reactivity feedback can be minimized by reducing moderation, and peaking factors can be reduced by limiting the amount of fuel per fuel element, which also minimizes the system mass.