ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
William J. Walters
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2150-2160
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2161805
Articles are hosted by Taylor and Francis Online.
The centrifugal nuclear thermal rocket is a concept for a liquid-fueled nuclear system that would allow for a much higher specific impulse than the more traditional solid-fueled nuclear thermal propulsion designs. Although some preliminary neutronics analyses have been done on conceptual designs, this work seeks to perform a more systematic analysis and optimization of design parameters and to investigate additional neutronics properties such as power distributions and reactivity coefficients. This work used OpenMC for neutronics analysis and Dakota for the parametric study and optimization. Inter- and intra-fuel element power distributions were calculated, and a strong radial dependence was noted within fuel elements that may pose a challenge to thermal constraints. A positive moderator temperature coefficient of 3.78 0.16 pcm/K was calculated for the reference model, which may pose a challenge for system design and control. The optimization study of reflector size, fuel spacing, fuel mass, and fuel element radius indicated many trade-offs in the design considerations, and that the baseline model can be significantly improved in all respects. Positive reactivity feedback can be minimized by reducing moderation, and peaking factors can be reduced by limiting the amount of fuel per fuel element, which also minimizes the system mass.