ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
William J. Walters
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2150-2160
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2161805
Articles are hosted by Taylor and Francis Online.
The centrifugal nuclear thermal rocket is a concept for a liquid-fueled nuclear system that would allow for a much higher specific impulse than the more traditional solid-fueled nuclear thermal propulsion designs. Although some preliminary neutronics analyses have been done on conceptual designs, this work seeks to perform a more systematic analysis and optimization of design parameters and to investigate additional neutronics properties such as power distributions and reactivity coefficients. This work used OpenMC for neutronics analysis and Dakota for the parametric study and optimization. Inter- and intra-fuel element power distributions were calculated, and a strong radial dependence was noted within fuel elements that may pose a challenge to thermal constraints. A positive moderator temperature coefficient of 3.78 0.16 pcm/K was calculated for the reference model, which may pose a challenge for system design and control. The optimization study of reflector size, fuel spacing, fuel mass, and fuel element radius indicated many trade-offs in the design considerations, and that the baseline model can be significantly improved in all respects. Positive reactivity feedback can be minimized by reducing moderation, and peaking factors can be reduced by limiting the amount of fuel per fuel element, which also minimizes the system mass.