ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE awards $153M Paducah services contract to North Wind Dynamics
The Department of Energy’s Office of Environmental Management announced it has awarded a contract worth nearly $153 million to North Wind Dynamics for infrastructure support services at the DOE’s Paducah Site in Kentucky. According to DOE-EM, the company, a small business based in Idaho Falls, Idaho, was chosen based on “key personnel, organization, and management approach, past performance, and value to taxpayers.”
Thomas G. Saller, Vishnu Nair, Andrew Till, Nathan Gibson
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2117-2135
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2133940
Articles are hosted by Taylor and Francis Online.
It is challenging to select an appropriate group structure for any given multigroup neutron transport problem. Many group structures were designed long ago, and the reasoning behind the creator’s choices may be unknown. In this work, we apply the simulated annealing optimization method to develop improved group structures for a set of test problems. We then use a random forest (a machine learning method) to identify which group structure will be the best for any new problem based on input characteristics, such as geometry and isotopics.
Simulated annealing spans a large solution space before narrowing in on an optimal solution, avoiding local minima by jumping around. Our solution space, however, is large and inconsistent, making finding the optimal group structure infeasible. Instead, we find potentially optimal group structures, ones that yield more accurate solutions than our standard group structures, but are probably not the “best” possible. Group structures are obtained for six classes of problems, ranging from a fast 233U system to a thermal 239Pu system. These were chosen to encompass a series of critical assemblies from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) handbook. These optimized group structures were used in PARTISN for a large range of ICSBEP critical assemblies and compared to the traditional Los Alamos National Laboratory group structures. Our reference solution was from 618-group PARTISN runs. The results were used to train a random forest regressor model with bagging, which was then tested on similar benchmarks. The bagging regressor model chose the best group structure from 52% to 65% of the time, and a subjectively “good” group structure up to 91% of the time.