ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Thomas G. Saller, Vishnu Nair, Andrew Till, Nathan Gibson
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2117-2135
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2133940
Articles are hosted by Taylor and Francis Online.
It is challenging to select an appropriate group structure for any given multigroup neutron transport problem. Many group structures were designed long ago, and the reasoning behind the creator’s choices may be unknown. In this work, we apply the simulated annealing optimization method to develop improved group structures for a set of test problems. We then use a random forest (a machine learning method) to identify which group structure will be the best for any new problem based on input characteristics, such as geometry and isotopics.
Simulated annealing spans a large solution space before narrowing in on an optimal solution, avoiding local minima by jumping around. Our solution space, however, is large and inconsistent, making finding the optimal group structure infeasible. Instead, we find potentially optimal group structures, ones that yield more accurate solutions than our standard group structures, but are probably not the “best” possible. Group structures are obtained for six classes of problems, ranging from a fast 233U system to a thermal 239Pu system. These were chosen to encompass a series of critical assemblies from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) handbook. These optimized group structures were used in PARTISN for a large range of ICSBEP critical assemblies and compared to the traditional Los Alamos National Laboratory group structures. Our reference solution was from 618-group PARTISN runs. The results were used to train a random forest regressor model with bagging, which was then tested on similar benchmarks. The bagging regressor model chose the best group structure from 52% to 65% of the time, and a subjectively “good” group structure up to 91% of the time.