ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Rohan Biwalkar, Kenneth Redus, Adam Stein, Sola Talabi
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2099-2116
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2023.2204174
Articles are hosted by Taylor and Francis Online.
The current study describes a simulation-based analysis of the atmospheric dispersion of radionuclide fission product particles in the near-field and far-field of a generic, conceptual microreactor, which is a small nuclear reactor with a power output typically ranging from 1 to 20 MW(thermal) and generally lower than 50 MW(electric). The near-field is a distance of up to 100 m from the microreactor while the far-field is a distance of 300 m or beyond from the microreactor. The generic microreactor operates at a pressure close to the ambient pressure. Therefore, in the event of a postulated accident that causes the leakage of radionuclide particles from the microreactor containment into the environment, the radionuclide particles are unlikely to travel too far from the reactor, as opposed to conventional nuclear reactors. The current paper provides estimates of average and 95th-percentile values of the normalized effluent concentration of the atmospheric radionuclide particle dispersion with respect to the source strength in the near-field and far-field of the conceptual microreactor. The computer code Atmospheric Relative CONcentrations in Building Wakes (ARCON96) was used to perform all simulations for the current study. It was observed that the 95th-percentile values of the normalized effluent concentration decrease by an order of magnitude as the receptor distance increases, i.e., from the near-field to the far-field. The dispersed aerosol concentration also decreases with time. A parametric study was performed to understand which input parameters affect the normalized effluent concentration values the most, and a definitive screening design was employed for this purpose. The atmospheric stability class and the distance between the reactor and the receptor were the parameters found to affect the aerosol dispersion characteristics by the greatest extent. The study recommends that the computer code RADTRAD (Radionuclide Transport and Removal And Dose Estimation) be used to estimate the actual dosage over distance using the outputs from ARCON96 as inputs, along with reactor-specific core inventories.