ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Imre Pázsit, Victor Dykin, Flynn Darby
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2030-2046
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2023.2178249
Articles are hosted by Taylor and Francis Online.
In recent work, we extended the methodology of multiplicity counting in nuclear safeguards by elaborating the one-speed stochastic transport theory of the calculation of the so-called multiplicity moments, i.e., the factorial moments of the number of neutrons emitted from a fissile item, following a source event from an internal neutron source [spontaneous fission and () reactions]. Calculations were made for solid spheres and cylinders, with the source being homogeneously distributed within the item. Recent measurements of the Rocky Flats Shells during the Measurement of Uranium Subcritical and Critical (MUSIC) campaign conducted by Los Alamos National Laboratory and assisted by the University of Michigan inspired us to extend the model to spherical shell geometry with a point source in the middle of the central cavity. Comparison of the calculated results with the experimental ones indicated that accounting for fission as the only neutron reaction (the standard procedure in the point model, adapted also in our work so far) was not sufficient for reaching good agreement with measurements. The model was therefore extended to include elastic scattering into the one-speed formalism, whereas the effect of inelastic scattering was accounted for in an empirical way. After these extensions, good agreement was found between the calculated and the measured values. The paper describes the extension of the theory and provides concrete quantitative results.