ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Satoshi Gunji, Shouhei Araki, Kenya Suyama
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2017-2029
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2164151
Articles are hosted by Taylor and Francis Online.
The fuel debris generated by the accident at the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant is expected to have not only heterogeneous but also nonuniform compositions. Similarly, damaged fuel assemblies remaining in the reactor vessels also have nonuniform configurations due to some missing fuel rods. These nonuniformities may cause changing neutron multiplication factors. The effect of nonuniformities on the neutron multiplication factor is clarified by computations, and the possibility of experimentally validating the computations used for criticality management is being investigated. For this purpose, in this study the criticality effects of several core configurations of a new critical assembly, STACY, of the Japan Atomic Energy Agency with nonuniform arrangements of uranium oxide fuel rods, concrete rods, and stainless steel rods were studied to confirm benchmarking potential. The difference in these arrangements changed the neutron multiplication factor by more than 1 $. We confirmed that changes in local neutron moderation conditions and the clustering of specific components caused this effect. In addition, the feasibility of benchmark experimental cores with nonuniform arrangements is evaluated. If benchmarking of such experiments could be realized, it would help validate calculation codes and develop criticality management methods by machine learning.