ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Eunji Lee, N. Colby Fleming, Ayman I. Hawari
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2007-2016
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2162789
Articles are hosted by Taylor and Francis Online.
A benchmark has been developed using a pulsed slowing-down-time experiment to isolate the thermalization process in graphite. The experiment was conducted at the Oak Ridge Electron Linear Accelerator facility at Oak Ridge National Laboratory, and it measured the time spectrum of neutrons leaking from a graphite pile during slowing down and thermalization within graphite. Simulations of the benchmark experiment were performed using the MCNP6.1 Monte Carlo code and the ENDF/B-VII.1 and ENDF/B-VIII.0 cross-section databases. The benchmark provides a time spectrum (i.e., time-dependent counts in a detector) that allows for validation of the graphite thermal scattering libraries (TSLs). The impact on the simulations using a suite of graphite TSLs was compared with the experimental results. Given the density of nuclear graphite, the TSL corresponding to graphite with 30% porosity, as implemented in ENDF/B-VIII.0, was found to most accurately represent the measured time spectrum corresponding to the thermal energy range with an average deviation of ±1.7%.