ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
A. Bailly, J.-L. Lecouey, A. Billebaud, S. Chabod, A. Kochetkov, A. Krása, F.-R. Lecolley, G. Lehaut, N. Marie, N. Messaoudi, G. Vittiglio, J. Wagemans
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1961-1971
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2148813
Articles are hosted by Taylor and Francis Online.
The potential use of a pulsed neutron source (PNS) to measure reactivity during nuclear fuel loading as a means to prevent core loading errors has been studied at the GUINEVERE facility. This facility couples the deuteron accelerator GENEPI-3C to the fast neutron subcritical reactor VENUS-F at the Belgian Nuclear Research Center SCK·CEN. The 14-MeV neutrons are produced in the reactor core center via fusion reactions. PNS experiments were performed in five reactor configurations corresponding to the different loading steps of VENUS-F. The evolution of the neutron flux during these PNS experiments was measured by several 235U fission chambers in various positions in the inner and outer reflector and analyzed using the area-ratio method. The results show that, despite strong spatial effects, a strong correlation between the reactivity values given by the area-ratio method and some reference reactivity values remains throughout the reactor unloading. Monte Carlo simulations were first validated by comparison with the data and then used to investigate the sensitivity of the method to a core loading error. First results show that some loading errors could be experimentally detected using a PNS.