ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
A. Kochetkov, A. Krása, N. Messaoudi, G. Vittiglio, J. Wagemans, A. Bailly, A. Billebaud, S. Chabod, F.-R. Lecolley, J.-L. Lecouey, G. Lehaut, N. Marie
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1952-1960
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2146429
Articles are hosted by Taylor and Francis Online.
The Source Jerk Integral (SJI) method has been extensively used to determine the subcriticality in VENUS-F zero-power experiments since 2012. The obtained results were in the range from −5 $ to about −20 $ and concerned the subcriticalities of accelerator-driven system MYRRHA mockup cores. Within the SALMON program, which is dedicated to the safe loading procedure of pressurized power reactors, five subcritical core configurations were assembled and studied in the VENUS-F reactor in 2019. These cores simulated the loading process in inverse mode: from more reactive to deep subcritical. The subcriticality of five variants of the SC11 VENUS-F core was changed in steps from −20 $ to about −100 $ by replacing the fuel assemblies with lead reflector assemblies. The subcriticality levels were determined with the pulsed neutron source (PNS) and SJI methods. The GENEPI-3C deuterium accelerator coupled with VENUS-F was used as an external neutron source. The results of the measurements obtained with the SJI method are presented in this paper. Time-dependent Monte Carlo calculations were performed to simulate the SJI experiments and to determine spatial-energy correction factors. Static Monte Carlo simulations were performed to calculate neutron spectra and reactivity. The results of the measurements (both SJI and PNS) are compared with the static MCNP calculations.