ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ho Nieh, TVA board members, and nuclear fuel recycling bill head to Senate floor
Nieh
Ho Nieh, the Trump administration’s nominee to be a member of the Nuclear Regulatory Commission, and four new board members of the Tennessee Valley Authority were approved in a vote today by the Senate Environment and Public Works Committee and head to the Senate floor for a final vote.
The committee also voted to advance to the Senate floor the Nuclear REFUEL Act of 2025 (S. 2082), which would smooth the regulatory pathway for recycling used nuclear fuel.
President Donald nominated Nieh on July 30 to serve as NRC commissioner for the remainder of a term set to expire June 30, 2029, which was held by former NRC commissioner Chris Hanson, who Trump fired in June.
Kyung Min Kim, Jaeuk Im, Namjae Choi, Han Gyu Lee, Han Gyu Joo
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1823-1844
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2148812
Articles are hosted by Taylor and Francis Online.
The BEAVRS benchmark is solved by PRAGMA, the graphics processing unit (GPU)–based continuous-energy Monte Carlo code. The solutions consist of the detailed simulation results for the two cycles that involve the reactivity and pin power distribution information for the zero-power physics tests and depletion. Primary results at hot zero power, such as the critical boron concentration at various rodded conditions, control rod bank worth, isothermal temperature coefficients, and assemblywise detector signal, are compared with the measured data. Core-follow calculations are performed with varied power, and the resulting boron letdown curves are compared with the measured one. Hot full-power depletion is also performed and the resulting pinwise power distributions of cycle 1 are compared with the nTRACER results. The comparison with the measured data and also with the nTRACER results demonstrates the high solution fidelity of PRAGMA. In all the calculations, PRAGMA uses a tremendously large number of histories, ranging from up to hundreds of millions per cycle, that are used to fully exploit the massive parallel computing capacity of GPUs. The execution time of the entire core-follow calculation with about 30 burnup steps takes less than 16 h on a single rack of computing nodes mounted with 24 gaming GPUs, which represents considerably high Monte Carlo core calculation performance.