ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Kyung Min Kim, Jaeuk Im, Namjae Choi, Han Gyu Lee, Han Gyu Joo
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1823-1844
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2148812
Articles are hosted by Taylor and Francis Online.
The BEAVRS benchmark is solved by PRAGMA, the graphics processing unit (GPU)–based continuous-energy Monte Carlo code. The solutions consist of the detailed simulation results for the two cycles that involve the reactivity and pin power distribution information for the zero-power physics tests and depletion. Primary results at hot zero power, such as the critical boron concentration at various rodded conditions, control rod bank worth, isothermal temperature coefficients, and assemblywise detector signal, are compared with the measured data. Core-follow calculations are performed with varied power, and the resulting boron letdown curves are compared with the measured one. Hot full-power depletion is also performed and the resulting pinwise power distributions of cycle 1 are compared with the nTRACER results. The comparison with the measured data and also with the nTRACER results demonstrates the high solution fidelity of PRAGMA. In all the calculations, PRAGMA uses a tremendously large number of histories, ranging from up to hundreds of millions per cycle, that are used to fully exploit the massive parallel computing capacity of GPUs. The execution time of the entire core-follow calculation with about 30 burnup steps takes less than 16 h on a single rack of computing nodes mounted with 24 gaming GPUs, which represents considerably high Monte Carlo core calculation performance.